Часть 5.
Разное
Ещё много интересных фактов.
Оглавление раздела.
1. Металлы. Кристаллическая структура и газ свободных электронов.
2. Потенциальная энергия. Каков её физический смысл?
3. Лепет официальной науки о ядре и ядерных силах.
4. Как "подтвердили" теорию относительности спутники GPS и TIMATION?
5. Комедия со временем жизни мюонов.
(добавлена 04.12.2018)
1. Металлы. Кристаллическая структура и газ свободных электронов.

Формируя воззрения на природу связей, которые обеспечивают кристаллическую структуру металлов, официальная наука попала в тяжёлое положение. Считается, что единственными переносчиками электричества в металлах являются свободные электроны, которые протискиваются сквозь кристаллическую решётку. На факт наличия свободных электронов в металлах указывали, например, эксперименты Толмена и др. [01. R.C.Tolman, T.D.Stewart. Phys.Rev., 8 (1916) 97.], которые продемонстрировали знак заряда и инерционные свойства этих электронов. Известно ещё явление термоэмиссии электронов из металлов, а также явление холодной эмиссии – «вытягивание» электронов из металла достаточно сильным электрическим полем. Так оформилась концепция газа свободных электронов в металлах – согласно теории Друде, на один атом в металле приходится один свободный электрон. Но эта концепция вела в глухой тупик. Во-первых, энергия ионизации атомов металлов составляет несколько eV. Наличие газа свободных электронов в металлах не может обеспечиваться тепловой ионизацией, поскольку для этого требовались бы температуры ~10000оК – а никакого другого механизма, обеспечивающего тотальную ионизованность атомов в металлах, до сих пор не предложено. Во-вторых, атомы металлов имеют малое число электронов во внешней электронной оболочке. Если атомы, имеющие по одному такому электрону, отдадут их в «газ свободных электронов», то у получившихся ионов не останется валентных электронов – способных образовывать химические связи. Тогда каким же образом может поддерживаться трёхмерная кристаллическая решётка?

Не найдя разумного ответа на этот вопрос, теоретики ухватились за квантово-механические представления – согласно которым, структура металлов держится благодаря совершенно особой, т.н. металлической связи, обусловленной газом свободных электронов, каждый из которых «как бы принадлежит сразу всем атомам решётки». Но подобная нелокализованная размазня, возможно, способна обеспечить выполнение условия квазинейтральности (как в настоящей плазме), но она не способна обеспечить жёсткую кристаллическую структуру – да ещё имеющую ту или иную полиморфную модификацию.

Хуже того: зонная теория твёрдого тела, которая, как принято считать, объясняет высокую электропроводность металлов, основана на т.н. «одноэлектронном приближении» (см., например, [02. Р.Кристи, А.Питти. Строение вещества: введение в современную физику. «Наука», М., 1969.]) – согласно которому, каждый свободный электрон в твёрдом теле взаимодействует лишь с ионами кристаллической решётки, а других свободных электронов как бы нет. Этот подход с очевидностью противоречит модели «металлической связи» - согласно которой, сама кристаллическая решётка существует лишь благодаря газу свободных электронов.

Таким образом, модели современной физики не дают нам даже элементарного понимания принципов, по которым формируются металлические структуры – а, значит, природа электропроводности металлов также остаётся неясной.

Много ли в металлах свободных электронов? Одним из блестящих доказательств того, что в металлах электричество переносится свободными электронами, считается опыт Толмена и Стюарта [01]. Катушку с намотанной медной проволокой приводили в быстрое вращение, а затем резко останавливали. Свободные электроны в проволоке, двигаясь «по инерции», давали слабый импульс тока, который регистрировался баллистическим гальванометром.

Поразительно, но на основе экспериментальных данных Толмена и Стюарта можно было определить не только знак заряда носителей электричества, которые давали регистрируемый импульс тока, и не только отношение заряда к массе у этих носителей (это авторы проделали), но и количество этих носителей в меди – а этого авторы не проделали. Независимые исследователи, обработав результаты опыта Толмена и Стюарта восполнили этот пробел. Получается, что в обычных условиях, даже в меди – одном из лучших проводников – один свободный электрон приходится на полтора-два миллиона атомов (!).

Таким образом, результаты Толмена и Стюарта не только демонстрируют наличие свободных электронов в металлах, но и свидетельствуют о таком ничтожном их количестве, что концепция газа свободных электронов в металлах оказывается совершенно неадекватной реалиям. Кстати, ничтожностью количества свободных электронов в металлах тривиально объясняется, почему теплоёмкость металлов, как и у диэлектрических кристаллов, подчиняется закону Дюлонга и Пти, т.е. почему свободные электроны в металлах не дают заметного вклада в теплоёмкость.

Два механизма переноса электричества в металлах.

Эксперименты по измерению подвижности свободных электронов в металлах дают, что, при протекании постоянного электрического тока, скорость перемещения роя электронов составляет миллиметры в секунду. Теперь представим двухпроводную линию с длиной, скажем, 10 км, к дальним контактам которой присоединён конденсатор, а к ближним её контактам можно подключить источник постоянного напряжения. После замыкания рубильника, подключающего этот источник, напряжение на конденсаторе появится с задержкой во времени, которая определяется, практически, скоростью света. По традиционной логике, заряды на пластинах конденсатора могут появиться, в данном случае, лишь благодаря перемещениям по проводам свободных электронов. Но, перемещаясь, в совокупности, на миллиметры в секунду, свободные электроны никак не смогут обеспечить то молниеносное установление напряжения на конденсаторе, которое наблюдается на опыте. При таком положении дел, как может наука заявлять, что ей понятен механизм переноса электричества в металлах?

Ещё Максвелл, говоря об электропроводности различных веществ (металлов, полупроводников) упоминал о, так называемых, «связанных зарядах». Их образуют атомарные связки протон-электрон. Но современная физика откровенно прошляпила эту тему и теперь с объяснением электропроводности особенно полупроводников путается в противоречивых толкованиях «дырочной» проводимости.

Так вот, волны связанных зарядов распространяются в веществе именно со скоростью света, причём перенос вещества при этом не происходит. В вышеприведённом примере с конденсатором на конце двухпроводной линии, электрические импульсы, которые формируются связанными зарядами в атомах проводов, движутся по линии к конденсатору, практически мгновенно, со скоростью света. Достигнув конденсатора, они сразу же создают напряжение между его пластинами – несколько меньшее, чем напряжение источника, из-за падения напряжения на проводах. Таким образом происходит зарядка конденсатора, которую можно назвать реактивной – обусловленной лишь наведёнными на пластинах конденсатора связанными зарядами противоположного знака, но не притоком электронов на отрицательную пластину и оттоком их с положительной пластины. Приток-отток электронов – это вторичный эффект, который протекает гораздо медленнее, чем индуцирование связанных зарядов. Но именно этот приток-отток электронов обеспечивает зарядку конденсатора, которую можно назвать активной. Характерное время, требуемое для активной зарядки, определяется постоянной RC-цепочки, т.е. произведением активного сопротивления на ёмкость. Лишь такой, активно заряженный, конденсатор способен дать мощную разрядную искру в воздухе при попытке замкнуть его выводы. Если же, в нашем случае с конденсатором на конце 10-километровой линии, отсоединить его спустя 33 мкс после подключения источника напряжения, то, испытав лишь реактивную зарядку, никакой мощной разрядной искры он не даст.

Таким образом, можно говорить о двух механизмах переноса электричества в металлах: безынерционном, через подвижки связанных зарядов, и инерционном, через подвижки свободных электронов. Причём, омическое сопротивление и джоулево тепло являются атрибутами только второго из этих механизмов.

Кстати, феномен джоулева тепла до сих пор не нашёл разумного объяснения в рамках концепции газа свободных электронов. В самом деле, при температуре 300оК (или 270С – это комнатная летняя температура) средняя тепловая скорость свободных электронов должна составлять ~107 см/с или 1000 км/с. Метаясь с такими скоростями между атомами решётки и соударяясь с ними, свободные электроны должны находиться в тепловом равновесии с решёткой – ведь нагрева образца при этом НЕ ПРОИСХОДИТ. Стоит, однако, приложить к образцу разность потенциалов, и дрейф газа свободных электронов со скоростью в миллиметры в секунду – отчего практически не изменяется равновесное распределение их скоростей – приводит к тому, что проводник начинает заметно нагреваться. Странно всё это выглядит в рамках концепции газа свободных электронов. Ещё раз представьте броуновское движение газа свободных электронов со средними скоростями 1000 км в секунду. И наложите на всю эту броуновскую кутерьму слабый дрейф электронов со скоростью миллиметры в секунду. Вопрос: сильно ли изменилась картина броуновского движения? Движение в газе свободных электронов останется на 99,999999% броуновским. Странно всё это с концепцией электронного газа.

В рамках традиционного подхода, этот парадокс до сих пор не разрешён. Ох уж эти теоретики.

Пару слов о полупроводниках.

Несмотря на широкое применение полупроводниковых электронных устройств, до сих пор отсутствует свободная от вопиющих противоречий теория электрических явлений в полупроводниках. Такое положение дел обусловлено догматом о том, что переносчиками электричества в полупроводниках могут являться только свободные носители электрического заряда. Говоря о таких носителях в металлах, теоретики вполне обходились рассмотрением электронов. В случае с полупроводниками ситуация усложнилась. Экспериментальные факты – в основном, наблюдения эффекта Холла – свидетельствовали о том, что примерно в половине полупроводниковых материалов подвижки положительного электричества доминируют над подвижками отрицательного электричества. Важно отметить, что холловская методика позволяет однозначно установить знак доминирующих носителей заряда, поскольку здесь исключена эквивалентность тока положительных зарядов противотоку отрицательных зарядов. В самом деле, направление тока через образец определяется внешней разностью потенциалов. Если ток в образце создаётся отрицательными носителями, то в поперечном магнитном поле они испытывают снос к той же боковой грани образца, к которой испытывают снос и положительные носители, если ток создаётся ими. Поэтому знак холловской разности потенциалов однозначно говорит о знаке заряда доминирующих носителей – подвижки которых никоим образом не сводятся к подвижкам носителей с противоположным зарядом, ибо и те, и другие притекают к одной и той же боковой грани образца.

Таким образом, в первой половине ХХ века физика столкнулась с острой проблемой – пытаясь идентифицировать свободных носителей положительного электричества в полупроводниках (ионы, разумеется, на эту роль не годились). Сам факт этой проблемы, казалось бы, указывал на то, что искомые носители не существуют – и имелся прекрасный повод для того, чтобы пересмотреть основные предпосылки и допустить, что в полупроводниках важную роль играют перемещения связанных зарядов. Но представления о механизмах генерации и миграции связанных зарядов в твёрдом теле были ещё совсем не развиты. И теория строилась на концепции свободных носителей положительного заряда в полупроводниках, которых назвали «дырками» – и которым приписали абсурдные свойства. Причём, единого мнения о том, что такое дырка, у теоретиков нет – известны два главных подхода к этому вопросу, и каждый из них абсурден по-своему.

То, что холловская методика определения знака доминирующего носителя электрического заряда применительно к полупроводникам даёт в половине случаев положительный заряд – теоретики худо-бедно отдуваются своей теорией дырочной проводимости. Почему, худо-бедно? Да потому, что Холловская методика позволяет ОДНОЗНАЧНО определять знак доминирующих переносчиков заряда. И если он получился положительный, то не надо ля-ля про "дырки", типа, если электрон с левого атома перескочил на правый, то, условно можно считать, что некая "дырка" как бы перескочила с правого атома на левый - вот такое не надо ля-ля, применительно к Холловской экспериментальной методике.

Но, ВНИМАНИЕ! Холловская методика применительно к таким двум металлах, как цинк и кадмий определяет доминирующий знак переносчика заряда – ПОЛОЖИТЕЛЬНЫЙ (!). В этих двух металлах перенос электричества осуществляется и свободными электронами, НО, доминирующим переносчиком в них являются связанные заряды положительного знака, как и в половине полупроводников.

То ли ещё будет!
--- ================================================================================================= ---
2. Потенциальная энергия. Каков её физический смысл?

Рассматривая в школе, а потом в ВУЗе задачи движения тела вверх-вниз вблизи поверхности Земли меня часто преследовали какие-то смутные сомнения насчёт физического смысла потенциальной энергии. Вот с кинетической энергией всё гораздо проще, больше скорость - больше энергия, меньше скорость - меньше энергия и в этом понимался (или принимался) какой-то физический порядок. А вот, глядя на потенциальную энергию Ер = mgh, такого физического порядка как-то не ощущалось. В формуле для этой энергии, масса тела m и ускорение свободного падения – величины конкретные и однозначно определяемые. А вот высота h, которую позволительно отсчитывать от любого понравившегося уровня – выглядела каким-то «слабым» звеном. Поэтому и формула Ер + Ек = Const, которая, как утверждают теоретики, прямо-таки вытекает из закона сохранения энергии, казалась подозрительной из-за этой произвольно выбираемой константы (Const), которая вытекает из произвольности выбора условного «нулевого» уровня в значении потенциальной энергии.

Поэтому теоретики, не утруждая себя поиском физического смысла (а похоже, что его долго искали, но так и НЕ нашли) этой потенциальной энергии, отгораживаются утверждением: «Основной физический смысл имеет не само значение потенциальной энергии, а её изменение». Вон оно что? Если в такую фразу вдуматься, то можно прямо таки объявить, что приращение кинетической энергии при падении тела на Землю черпается ОТКУДА-ТО! Кинетическая энергия при падении точно увеличилась, но какая другая конкретная энергия при этом уменьшилась? Ох, что-то не ладно с такой абстрактной потенциальной энергией, лишённой физического смысла. Давайте с этой «абстракцией» попробуем поразбираться.

Классическое представление о гравитационной энергии при взаимодействии тел.

Рассмотрим гравитационную энергию, этот один из видов потенциальной энергии. И так, Гравитационная энергияпотенциальная энергия системы тел (частиц), обусловленная их взаимным гравитационным тяготением.

Самое известное выражение - это потенциальная энергия Ep тела в поле тяготения Земли вблизи поверхности приближённо выражается формулой:
Ep = mgh,
где m — масса тела, g — ускорение свободного падения, h — высота положения центра масс тела над произвольно выбранным нулевым уровнем.

Оно выводится из более общей формулы для случая двух тяготеющих точечных тел с массами M и m, их гравитационная энергия Ug равна:
где:
G — гравитационная постоянная;
R — расстояние между центрами масс тел.

Этот результат получается из закона тяготения Ньютона, при условии, что для бесконечно удалённых тел гравитационная энергия равна 0.

(Выражение для гравитационной силы имеет вид:
где Fg — сила гравитационного взаимодействия.
Эта сила выражается через гравитационную энергию:
или тоже самое через дифференциал вида:
Этот же результат верен для малого тела, находящегося вблизи поверхности большого. В этом случае R можно считать равным h + RM, где RM — радиус тела массой M, а h — расстояние от центра тяжести тела массой m до поверхности тела массой M.
На поверхности тела M имеем:
Если размеры тела M много больше размеров тела m, то формулу гравитационной энергии можно переписать в следующем виде:
где величину g = GM / R2M называют ускорением свободного падения на поверхности тела М. При этом член mGM/RM не зависит от высоты поднятия тела над поверхностью и может быть исключён из выражения путём выбора соответствующей константы. Таким образом, для малого тела, находящегося на поверхности большого тела справедлива следующая формула
Ug = mgh,
В частности, эта формула применяется для вычисления потенциальной энергии тел, находящихся вблизи поверхности Земли (Ep = Ug).

Хотя мы привыкли чаще пользоваться вот этой последней формулой, где потенциальная энергия гравитационного взаимодействия тела m с Землёй формально представляется, как положительная величина. Но не стоит забывать, что она выведена из более общей формулы для гравитационной энергии ( Ug = -G Mm / R), в которой эта энергии всегда отрицательна при любом расстоянии между телами m и M.

И так, подытожим.
В выражении для гравитационной энергии
знак «минус» возник исключительно из математических соображений. С одной стороны, при удалении малого тела от большого гравитационная (потенциальная) энергия их взаимодействия должна расти, но для бесконечно удалённых, то есть для гравитационно не взаимодействующих тел, гравитационная энергия равна нулю. Вот и пришлось теоретикам выкручиваться, и делать энергию гравитационного взаимодействия отрицательной. В результате такого математического трюка в формулу энергетического баланса (кинетическая энергия плюс потенциальная) закралась «отрицательная»(!!?) компонента. В результате этого получается, что при падении малого тела на большое положительная кинетическая энергия черпается из огромного «отрицательного» (???) источника потенциальной энергии, здесь только формально математически всё сошлось. Какой-то странный энергетический баланс кинетической и потенциальной энергии получается!
Это, как, если бы вам вместо зарплаты каждый месяц долговые расписки выдавали, месяц отработал - получи расписку: "Мы вам должны 50 000 рублей", ещё отработал - ещё одна расписка и т.д. Но люди могут работать в долг, а законы природы НЕ МОГУТ!
Или пример с сообщающимися сосудами. Если наблюдатель видит только один из этих сосудов и не знает, что он соединён (не видит замаскированной трубки) со вторым сосудом, то случаи подъёма и опускания уровня жидкости в одном наблюдаемом сосуде придётся «объяснять» в рамках самых фантастических гипотез и соответствующих физических моделей. И пусть чисто математически всё сойдётся, но именно физического смысла в таких моделях не будет!

Поэтому и пошли ортодоксальные теоретики на рассуждения типа:
«Потенциальная энергия принимается равной нулю для некоторой конфигурации тел в пространстве, выбор которой определяется удобством дальнейших вычислений. Процесс выбора данной конфигурации называется нормировкой потенциальной энергии»,

а вот самое главное:
«Основной физический смысл имеет не само значение потенциальной энергии, а её изменение».

Из этих рассуждений веет какой-то иллюзорностью именно относительно физического смысла этой «отрицательной» энергии. Фактически заявляется, что прирост кинетической энергии при падении тела на другое массивное тело черпается ОТКУДА-ТО. И хотя по-вашему, господа-товарищи академики, «основной» смысл имеет только изменение потенциальной энергии. Но поясните, пожалуйста, хотя бы на правах «не основного», именно ФИЗИЧЕСКИЙ смысл этой самой отрицательной потенциальной энергии.

ОТО, как Эйнштейновская теория гравитации НЕ даёт ответа на вопрос: за счёт чего идёт приращение кинетической энергии у падающего тела? И это теория гравитации?!! Она постулирует «искривление пространства-времени», уходя от ответа на выше поставленный вопрос.

В разделе про ГРАВИТАЦИЮ мы приводили ряд экспериментальных данных (и будем их постоянно пополнять), говорящих в пользу того факта, что гипотеза от том, что КАЖДАЯ масса во вселенной притягивает все остальные массы (создаёт вокруг себя "гравитационное" поле) НЕСОСТОЯТЕЛЬНА. А тогда и выведенная на основе закона "всемирного" тяготения чисто математически безупречная отрицательная потенциальная гравитационная энергия - лишённая физического смысла подпорка под несостоятельную гипотезу.

Порядок с законом сохранения энергии будет достигнут тогда, когда в физических теориях и моделях ВСЕ энергии будут исключительно ПОЛОЖИТЕЛЬНЫЕ. А в уравнениях энергобаланса убыль одной положительной энергии будет приводит к прибыли другой тоже положительной энергии. А пока эти энергетические «балансы» описывают чисто формально (математически) какие-то абстрактные физические модели.

P.S. Вот представьте, что вы отработали месяц, а вам вместо зарплаты выдают расписку: «Фирма «Рога и копыта» должна такому-то гражданину 50 000 рублей». Отработали второй месяц – выдают вторую записку – ещё должны пятьдесят тысяч. Тут понятно, бывает такое, люди могут работать в долг. НО! Теоретики нас хотят убедить, что в долг могут работать и законы природы(?!!).
--- =================================================================================================== ---

3. Лепет официальной науки о ядре и ядерных силах.

При огромном количестве экспериментального материала по физике атомного ядра, «универсальной ядерной модели… до сих пор не построено… Приходится довольствоваться тем, что данная конкретная модель удовлетворительно объясняет лишь некоторые свойства ядер. Поэтому неудивительно, что в ядерной физике используется множество самых разнообразных моделей… причём исходные посылки разных моделей зачастую противоречат друг другу» [Н1].

Сами принципы, по которым, как полагают, связаны нуклоны в ядре, выглядят весьма искусственно. До создания квантовой хромодинамики считалось, что нуклоны удерживаются в ядре благодаря их обмену пи-мезонами. Как можно видеть, если, при обмене частицами с ненулевой массой, выполняется закон сохранения импульса, то такой обмен может дать лишь силы отталкивания, но никак не силы притяжения. Нелепость представлений об обменном характере ядерных сил, как полагают теоретики, не слишком бросается в глаза, если принять, что пи-мезоны, о которых идёт речь, являются виртуальными. Но тогда, непостижимым образом, виртуальные пи-мезоны должны переносить от одних нуклонов к другим вполне реальные «заряд, ток, импульс и момент импульса» [Б1]. Перенос реального заряда подразумевает, что протон превращается в нейтрон, или наоборот. Хорошо известно о реакции превращения нейтрона в протон, но освобождаемой здесь частицей с отрицательным зарядом является электрон, а не пи-мезон, масса которого на два порядка больше разности масс нейтрона и протона. Поэтому, для поддержания тезиса о пи-мезонах как переносчиках сильного взаимодействия, приходилось прибегать к спасительному принципу неопределённости, «согласно которому закон сохранения энергии может как бы нарушаться на величину дельта E, коль скоро процесс завершается в течение времени, не превышающего дельтаt~h/дельтаE» [Н1]. Исходя из «как бы нарушения», соответствующего массе пи-мезона, получали ограничение на время жизни пи-мезона в ядре – порядка 10-23 с. Этого времени пи-мезону едва хватало бы для преодоления «радиуса действия ядерных сил», двигаясь со скоростью света. Но, позвольте – тогда следовало бы учитывать релятивистский рост массы пи-мезона! И тогда ограничение на время его жизни было бы ещё на порядки меньше! И тогда он уже далеко не успевал бы преодолевать «радиус действия ядерных сил»! От учёта релятивистского роста массы все эти фантазии рухнули бы, как карточный домик! Поэтому его и не учитывали. У теоретиков так принято: если релятивистский рост массы им мешает, то следует делать вид, что его нет.

Как это называется, если не полное теоретическое бессилие? Построенная сплошь на теоретических натяжках, пи-мезонная модель не давала удовлетворительные ответы даже на простейшие вопросы. Если ядерные силы одинаковы между любой парой нуклонов (протон-протон, протон-нейтрон, нейтрон-нейтрон) – то почему не бывает нуклонных комплексов из одних протонов или одних нейтронов? И зачем вообще нужны нейтроны в ядре? Да не просто нужны: почему, по мере роста атомного номера, для устойчивости ядра требуется всё большее число избыточных нейтронов по сравнению с числом протонов? Отчего у чётно-чётных ядер энергия связи на нуклон систематически больше, чем у нечётно-нечётных? Как объяснить картину ядерных уровней энергии, которая разительно отличается от картины атомных уровней? И где в пи-мезонной модели место для самого главного, что должна объяснять модель ядерных сил – для дефекта масс? Того самого, не понимая природы которого, сделали атомную бомбу!

В это трудно поверить, но теоретики до сих пор не могут внятно разъяснить – откуда вообще берутся атомные ядра в природе, и при каких условиях они образуются. Исходили-то из того, что протоны, имея положительные заряды, должны кулоновски отталкиваться друг от друга. И если они как-то сцеплены в ядре – то это потому, что их удерживают более мощные ядерные силы, которые пересиливают кулоновское отталкивание. Только ядерные силы должны быть короткодействующими и сцеплять нуклоны, лишь когда они касаются друг друга своими бочками – иначе все они уже давно бы слиплись в одно вселенское ядро. Но, чтобы нуклонам сблизиться до касания бочками, они сначала должны пересилить отталкивание – преодолеть кулоновский барьер. Чтобы такое происходило в естественных природных условиях, протоны должны соударяться, имея энергии, которые соответствуют температурам в десятки миллионов градусов. Где же в природе бывают такие температуры? «В звёздах! – догадались теоретики. – Там-то атомные ядра и слипаются!» Но вскрылись пренеприятные факты. Получалось, что ядра, скорее, рассыпаются в звёздах – ведь, например, в Солнце падают разные атомы и ионы, а вылетают из него протоны и электроны! Это отнюдь не подтверждало версию о том, что на Солнце идут термоядерные реакции… Не обнаруживая в природе вариантов естественного происхождения сложных ядер, ортодоксы решили перехитрить природу и научиться наращивать ядра искусственно, в лабораторных условиях. Идеология была прежней: для того, чтобы лишний протон прилип к ядру-мишени, надо этот протон как следует разогнать – чтобы он преодолел кулоновский барьер ядра. В рамках этой тематики, на протонных ускорителях сожгли несметное количество киловатт-часов электроэнергии. Результаты оказались смехотворны: при малых энергиях протоны просто рассеивались на ядрах, а при больших энергиях они инициировали ядерные реакции – даже если протон и «прилипал» к ядру, такое ядро долго не жило. Бывали, впрочем, исключения: например, таким образом из лития получался изотоп бериллия, но эта реакция имела резонансный характер – она происходила лишь при одной определённой энергии налетавшего протона. В общем, ускорительный опыт тоже ничуть не помог теоретикам понять – откуда берутся сложные ядра.

И вот, не имея по этому вопросу ни малейшего понимания, затеяли ещё один грандиозный проект – который они называют управляемым термоядерным синтезом. Хотя никакой он у них не управляемый, и никакой не термоядерный, и никакой не синтез. Наобещали-то публике с три короба: будто решат мировые энергетические проблемы, если научатся разогревать сверхлёгкие ядра до десятков миллионов градусов. Тогда, мол, эти ядра смогут преодолевать кулоновский барьер и будут, мол, слипаться – с выделением огромной энергии! Опять, без десятков миллионов градусов – ну никак. А ведь чтобы убедиться в работоспособности идеи об искусственном слиянии сверхлёгких ядер, не нужны десятки миллионов градусов. Надо исследовать простейшую реакцию синтеза сверхлёгких ядер – слияние протона и нейтрона. Она шла бы с «выделением огромной энергии» даже при комнатной температуре – поскольку здесь реагентам не надо преодолевать кулоновский барьер. Вот же оно, решение мировых энергетических проблем! «Нет, - отвечают нам ортодоксы, - даже проверку слияния протонов и нейтронов выполнить очень непросто. Скажем, пучок протонов-то создать несложно, но откуда взять пучок нейтронов?» Ну, надо же! Откуда взять пучок нейтронов, чтобы измерить их время жизни – это ортодоксы отлично знают: из отверстия в защите ядерного реактора. Откуда взять пучок нейтронов, чтобы с его помощью делать искусственные (долго не живущие) дейтерий и тритий для водородных бомб – это они тоже отлично знают: из того же отверстия. Но откуда взять пучок нейтронов, чтобы проверить идею управляемого термоядерного синтеза – этого они категорически не знают! Темнят… а почему? Потому что эту реакцию – слияния протона с нейтроном – исследовали в первую очередь. И убедились в том, что она, вопреки их теориям, почему-то не идёт

Кстати, это не помешало теоретикам создать новую, продвинутую теорию ядра – квантовую хромодинамику. Эту теорию создавали, соблюдая известный принцип: новая теория должна включать старую, как частный случай. Поэтому все нерешённые проблемы мезонной теории ядерных сил так и остались нерешёнными – зато внимание научной общественности переключили на новые, продвинутые проблемы. Согласно квантовой хромодинамике, происходит всё тот же обмен нуклонов виртуальными пи-мезонами, но этот обмен является, якобы, рядовым частным следствием ещё более фундаментальных процессов. Выдвинули гипотезу о составных частях нуклонов, т.н. кварках, имеющих дробный электрический заряд – при том, что сущность электрического заряда официальная физика до сих пор не разъяснила. Как полагают, кварки в нуклоне связаны благодаря их обмену т.н. глюонами – тоже гипотетическими частицами, имеющими, как и кварки, целый набор произвольно введённых квантовых параметров. Сразу же возникла проблема конфайнмента, т.е. чудовищной энергии связи кварков в нуклоне: не удаётся «раздробить» нуклон на кварк-глюонные составляющие, воздействуя на него энергиями, даже на многие порядки превышающими его энергию покоя [Л1]. Т.е., дефект масс здесь на порядки больше самих масс!

Но даже этот выдающийся абсурд не поколебал уверенность ортодоксов в том, что они идут верной дорогой. Они уверяют общественность, что до сих пор не разбили нуклоны только потому, что недостаточно сильно (!) по ним били. Надо, мол, ещё крепче столкнуть их лбами! Поэтому надежды на получение кварков и глюонов в свободном состоянии теоретики связывают с вводом в строй Большого адронного коллайдера (LHC) в ЦЕРНе, как и надежды на открытие на этом коллайдере т.н. бозона Хиггса – гипотетической частицы, из-за которой, якобы, происходят «спонтанные нарушения симметрии», порождающие массы у элементарных частиц [Л1].

Но, на наш взгляд, здесь всё гораздо проще. Проблему конфайнмента мы не решаем, а устраняем. Эта проблема, как мы полагаем, надуманная: кварков и глюонов не существует в природе. Что же касается масс элементарных частиц, то они таковы, потому что это базовое фундаментальное свойство каждой элементарной частицы (подчеркнём, каждой реальной элементарной частицы, а не выдуманных теоретиками виртуальных короткоживущих частиц с произвольно приписанными им нужными теоретикам свойствами).

Б1. Г.Бете, Ф.Моррисон. Элементарная теория ядра. «Изд-во иностранной литературы», М., 1958.
Л1. А.Любимов, Д.Киш. Введение в экспериментальную физику частиц. «Физматлит», М., 2001.
Н1. А.И.Наумов. Физика атомного ядра и элементарных частиц. «Просвещение», М., 1984.
--- ====================================================================================================---

4. Как «подтвердили» теорию относительности спутники GPS и TIMATION.

С началом «эры GPS» в массовое сознание вдалбливали не подлежащий сомнению тезис о том, что эта навигационная система работает, с огромной точностью подтверждая – ежедневно, ежечасно и ежеминутно – предсказания СТО и ОТО насчёт изменения темпа течения времени на бортах спутников. Но, странным образом, от общественности скрывали – как конкретно эти предсказания подтверждаются. Так, в одной из самых известных книг по основам GPS [Т1], автор ни словом не обмолвился о том, каким именно образом при работе GPS учитываются релятивистские и гравитационные эффекты. Это настолько контрастирует с широтой охвата материала и подробностями изложения в [Т1], что невольно возникает вопрос: почему от нас прячут свидетельства об эйнштейновской гениальности?

А ответ прост: потому что этих свидетельств НЕТ! Ибо, концепция относительных скоростей и в случае с GPS не работает – с полной очевидностью. Вот, смотрите: пусть пользователь GPS-навигатора Вася принимает сигналы от нескольких спутников GPS. Каждый спутник из этого рабочего созвездия имеет свою скорость относительно Васиного GPS-навигатора. По логике относительных скоростей, для Васи бортовые часы на каждом из этих спутников должны испытывать квадратично-допплеровские замедления хода в соответствии с их скоростями относительно Васи. А откуда бортовым часам знать эти скорости? К тому же, Вася не один, есть ещё другие пользователи GPS-навигаторов – Петя, например. Если скорости тех же спутников относительно Пети не те, что относительно Васи, то и квадратично-допплеровские замедления ходов бортовых часов должны быть «не те», что для Васи. А это уже ни в какие ворота не лезет. Ведь опыт показывает, что хода бортовых часов GPS – однозначны. Чихали эти часы на Васю, на Петю и на миллионы остальных пользователей – они «тикают» одинаково для всех. Станции слежения за спутниками GPS, рассредоточенные по разным долготам, свидетельствуют: ход каждых бортовых часов постоянен – с точностью до небольших случайных флуктуаций, и до поправок на небольшие отличия орбит GPS от круговых, а также на периодически производимые коррекции этих ходов. Только благодаря почти постоянным ходам бортовых часов GPS, оказывается возможным выполнение одного из главных пунктов технического задания: удерживать шкалу времени GPS в пределах небольшой разности со шкалой Всемирного координированного времени (UTC). На заре «эры GPS», эта разность не должна была превышать ±100 нс, затем ±50 нс. Сегодня эта разность не должна превышать ±20 нс. Таким образом, работа GPS основана на почти СИНХРОННОМ ходе шкалы GPS, формируемой бортовыми часами, и шкалой UTC, формируемой наземными часами. Как такое возможно, если, по отношению к наземным часам, бортовые часы испытывают релятивистские и гравитационные эффекты?

Разгадка вот в чём. С помощью первых, экспериментальных спутников GPS, убедились в том, что совместное действие этих двух эффектов имеет место. После этого, «спутниковые часы перед запуском регулируют на такую скорость хода, чтобы компенсировать эти… эффекты» [Ф1]. Этот страшный секрет уже раскрыт и в официальных учебных пособиях [О1]. Строго говоря, подстраивают выходную частоту не бортового стандарта, а бортового синтезатора – ну да ладно. Факт внесения ОДНОЗНАЧНЫХ поправок на гравитационные и релятивистские эффекты – налицо. Никакого вам смехотворного «парадокса часов»!

Тем не менее, Ван Фландерн полагает, что, в случае с GPS, «мы можем утверждать с уверенностью, что предсказания теории относительности подтверждены с высокой точностью» [Ф1]. Он пытается убедить нас в том, что бортовые часы GPS идут в полном согласии с предсказаниями Эйнштейна. «ОТО предсказывает… что атомные часы на орбитальных высотах спутников GPS идут быстрее примерно на 45900 нс/день, потому что они находятся в более слабом поле тяготения, чем атомные часы на земной поверхности. Специальная теория относительности (СТО) предсказывает, что атомные часы, перемещающиеся с орбитальной скоростью спутников системы GPS идут медленнее примерно на 7200 нс/день, чем неподвижные наземные часы» [Ф1]. Позвольте – где это СТО предсказывала, что релятивистское замедление хода бортовых часов ПОСТОЯННО по отношению ко всем «неподвижным наземным часам»? Ведь скорость каждых бортовых часов различна по отношению к различным «неподвижным наземным часам» – да ещё периодически изменяется! Одинаковость релятивистской поправки для всех бортов и её независимость от времени означает, что она определяется одной и той же, постоянной скоростью – а именно, линейной скоростью орбитального движения спутников GPS. И, действительно, рабочей системой отсчёта GPS является геоцентрическая невращающаяся [Т1]. Констатируем: квадратично-допплеровское замедление ходов бортовых часов GPS определяется только их локально-абсолютными скоростями (в пределах солнечной системы, где бы не находилось пробное тело, всегда можно найти такую систему отсчета – вопреки СТО, в которой скорость этого тела будут «абсолютной». И от ЭТОЙ скорости будет зависеть квадратично-доплеровский эффект. И ЭТА скорость определится по доплеровскому сдвигу частоты при радиолокации движущегося тела. Так, в окрестностях Земли – это область диаметром примерно 900 000 км.), примерно одинаковыми для всех спутников GPS. Таким образом, работа GPS не подтверждает концепцию относительных скоростей, а, наоборот, оставляет от этой концепции мокрое место. Причём, если в опыте Хафеле-Китинга (В октябре 1971 г. они проделали выдающийся эксперимент с транспортируемыми атомными часами на цезиевом пучке. Четвёрку таких часов аккуратно сличили со шкалой времени Военно-морской обсерватории США (USNO), а затем, обычными пассажирскими рейсами, выполнили две кругосветные воздушные транспортировки этой четвёрки – в восточном и западном направлениях.), давшем аналогичный результат, величина измеряемого эффекта превышала погрешность измерений всего лишь в разы, то, в случае с GPS, запас по точности составил уже почти четыре порядка.

Но это ещё не всё. Релятивистские и гравитационные изменения ходов бортовых спутниковых часов – это бесспорные факты. Только являются ли эти изменения хода следствиями замедления времени? Нет, не являются. Известны факты, тоже бесспорные, которые свидетельствуют о том, что дело здесь НЕ в замедлении времени. Действительно, такой фундаментальный феномен, как замедление времени, влиял бы на скорость всех без исключения физических процессов. В частности, выходные частоты генераторов самых различных конструкций изменялись бы одинаково – в относительном исчислении. Однако, это не так: в отличие от частот квантовых стандартов, частоты кварцевых генераторов не испытывают релятивистских и гравитационных сдвигов!

Так, в мае 1967 г. и в сентябре 1969 г. США запустили первую пару спутников низкоорбитной навигационной системы TIMATION (см., например, [И1]). На их бортах находились прецизионные кварцевые генераторы, частоты которых контролировались с точностью не хуже 10-11 [И1]. Для спутников TIMATION, с высотой орбиты 925 км, суммарное действие релятивистского и гравитационного эффектов составило бы –2.1×10-10. Эта цифра по модулю в 20 раз грубее, чем вышеназванная точность контроля частоты. Поэтому, если частоты кварцевых генераторов на бортах TIMATION испытывали бы релятивистские и гравитационные сдвиги, то их сумма непременно была бы обнаружена. Причём, это обнаружение явилось бы сенсацией – первым подтверждением СТО и ОТО с помощью бортовых спутниковых часов. Однако, сенсация не состоялась. Её устроили попозже, после запуска первых экспериментальных спутников GPS с квантовыми стандартами частоты на бортах.

Эти факты – убийственны для СТО и ОТО. Частоты квантовых генераторов испытывают релятивистские и гравитационные сдвиги, а частоты кварцевых генераторов их не испытывают! Значит, в случае квантовых генераторов, эти сдвиги обусловлены вовсе не замедлением времени – которое, как мы помним, влияло бы на все физические процессы. Анализ причин, которые, обеспечивают эти сдвиги, уводит нас в тему строения атомов – это отдельная и большая тема. Кратко же об этом можно сказать следующее. В движущихся телах (а под движением здесь понимается не относительное движение, как в СТО, а та самая, выше отмеченная, локально-абсолютная скорость тела) сдвигаются положения квантовых уровней энергии в веществе. Эти сдвиги уровней действуют на частоты квантовых генераторов напрямую, а на частоты классических генераторов – лишь опосредованно. Разница в том, что собственная частота классического генератора определяется не столько частотами квантовых уровней атомов вещества, из которых он построен, сколько законами структурной организации этого вещества, обеспечивающими эту постройку. Вот почему релятивистские и гравитационные сдвиги квантовых уровней энергии, трансформированные на структурный уровень классического генератора, могут приводить к совершенно иным результирующим сдвигам его частоты.

Факт остаётся фактом: у кварцевых генераторов на бортах спутников TIMATION не обнаружились релятивистские и гравитационные сдвиги частот, хотя точности для этого вполне хватало. На специализированных Интернет-форумах, где заводили речь о спутниках TIMATION, у релятивистов начиналась истерика. Руководствуясь принципом «Всё отрицать!» - они выдвигали самые нелепые возражения. И что никаких спутников TIMATION не было – это, мол, чья-то выдумка. И что релятивистские и гравитационные сдвиги частот там не обнаружились просто потому, что такая задача, мол, и не ставилась. И что не бывает кварцевых генераторов с точностью контроля частоты до 10-11 – эта цифра не бывает, мол, лучше чем 10-8 (хотя уже имеются экземпляры со значением этого параметра 1.1×10-12 [М1]). Отчего же релятивисты так неадекватно реагируют? Оттого, что слишком наглядно спутники TIMATION продемонстрировали: релятивистского и гравитационного замедлений времени в природе НЕ СУЩЕСТВУЕТ! Никаким теоретическим словоблудием этот вывод уже не заболтать. Нам, конечно, укажут, что были эксперименты, в которых обнаруживалось релятивистское и гравитационное замедление времени. Это неправда: либо экспериментаторы сами заблуждались, либо сознательно вводили в заблуждение нас с Вами.

И1. R.L.Easton. Роль частоты и времени в навигационных спутниковых системах. В сборнике «Время и частота», М., Мир, 1973, стр.114. (Перевод Proc. IEEE, 60, 5 (1972), special issue "Time and Frequency").
М1. M.Mourey, S.Galliou, R.J.Besson. Proc. of 1997 IEEE International Frequency Control Symposium, p.502. 28-30 May 1997, Hilton Hotel, Disney World Village, Orlando, Florida, USA.
О1. К.Одуан, Б.Гино. Измерение времени. Основы GPS. «Техносфера», М., 2002.
Т1. James Bao-Yen Tsui. Fundamentals of Global Positioning System Receivers: A Software Approach. «John Wiley & Sons, Inc.», 2000.
Ф1. Tom Van Flandern. What the Global Positioning System Tells Us about Relativity. http://www.metaresearch.org/cosmology/gps-relativity.asp Русский перевод доступен на http://ivanik3.narod.ru


--- ====================================================================================================---

5. Комедия со временем жизни мюонов.

Известен миф о том, что одни из исторически первых свидетельств о релятивистском замедлении времени были получены при измерениях времени жизни мю-мезонов, или мюонов. Мы говорим «миф», потому что даже в учебной литературе и обзорах экспериментов авторы умалчивают подробности и стараются побыстрее проскочить это скользкое место. Даже такой известный специалист по экспериментальной базе теории относительности, как У.И.Франкфурт, на этот счёт дал мимоходом три голые ссылки – и ни слова больше [Ф2]. Слишком уж бросается в глаза, в случае с мюонами, грубость фальшивки.
Вот, профессор А.Н.Матвеев поучает студентов: «Существуют различные способы… измерить длину пути мю-мезона между моментом его рождения и моментом его распада и независимо определить его скорость. Благодаря этому можно найти время жизни частицы. Если имеет место эффект замедления времени, то время жизни мезона должно быть тем больше, чем больше его скорость…» [М3] – и далее о том, что эксперимент всё это подтвердил, причём собственное время жизни мю-плюс-мезона составило примерно 2×10^-6 с. Эти поучения – позор какой-то. Хотя бы потому, что в опытах, на основе которых приняли соглашение об этих самых двух микросекундах, «моменты рождения» мюонов и, соответственно, их «длины пути», были принципиально неизвестны!
Дело в том, что в этих опытах работали с мюонами природного происхождения, которые летели вниз сквозь атмосферу, рождаясь при ударах протонами космических лучей по частицам воздуха. Протоны эти высокоэнергичные, и мюоны получались релятивистские – имевшие стартовую скорость, близкую к скорости света. О том, что мюоны нестабильны, свидетельствовал, например, такой факт: поглощение мюонов в слое воздуха в 1.4 раза больше, чем в эквивалентном по массе слое воды [Ф3]. Поскольку потери на взаимодействие с веществом в этих случаях практически одинаковы, а разница лишь в проходимых путях, напрашивался вывод о самопроизвольном распаде мюона. Время его жизни поначалу определяли на основе странного допущения о том, что все мюоны рождались на одной и той же высоте – где-то между 15 и 20 км. Использовали мюонный телескоп – пару разнесённых на некоторое расстояние сцинтилляторов. Если мюон пролетал сквозь оба сцинтиллятора, то по двум вспышкам – в режиме совпадений – мюон и регистрировался. Так вот, отклоняли телескоп на некоторый угол от вертикали и измеряли скорость счёта. Затем ставили телескоп вертикально и помещали над ним плотный поглотитель, компенсировавший уменьшение массы проходимого мюоном воздушного столба. При выровненных таким образом потерях на взаимодействие с веществом, скорости счёта для двух названных случаев были различны. Зная геометрическую разность проходимых мюоном путей, вычисляли среднее время его жизни.
Слабым местом здесь являлось ничем не подтверждённое допущение о том, что все мюоны рождались на одной высоте. Окажись это допущение ошибочным – и пойдут прахом все результаты. Так и вышло: сегодня хорошо известно, что мюоны рождаются на всей толще атмосферы, пронизываемой протонами космических лучей. Но до сих пор студенты выполняют лабораторные работы, в которых наклоняют мюонный телескоп. Теперь им уже заранее подсказывают, какую нужно взять «высоту рождения» мюонов, чтобы собственное время их жизни получалось близкое к справочному. Получив за эту туфту пять баллов, мальчики потом кричат на Интернет-форумах, что они «своими руками щупали увеличение времени жизни мюонов»!
А где там оно, увеличение-то? А вот как это релятивисты поясняют. Если собственное время жизни мюона составляет 2 микросекунды, то, двигаясь даже со скоростью света, он пролетел бы всего 600 м, но он пролетает многие километры – значит, только благодаря увеличению времени жизни! Нет уж, вы нас не путайте. Собственное время жизни мюона – это, по вашим же релятивистским меркам, время в системе отсчёта самого мюона. Но в этой системе отсчёта он не пролетает не то что километры, но даже и миллиметры – ибо в ней он покоится. Это в лабораторной системе отсчёта он «пролетает», причём – неизвестно сколько. Что же вы, господа, сопоставляете, если время берёте в одной системе отсчёта, а путь – в другой? Причём, для времени релятивистское преобразование делаете, а для пути – нет! Вы без обмана совсем ничего не можете? А без обмана здесь так: надо знать время жизни покоящегося в лаборатории мюона – вот тогда можно прикидывать, сколько он за это время пролетел бы. Но откуда было взяться покоящимся в лаборатории мюонам, когда они прошибали телескопы насквозь?
От этой «пролётной» методики перешли к более продвинутой – «полу-пролётной». В телескопе поместили два свинцовых поглотителя – притормаживавший и останавливавший. Добавили сцинтилляторов, а схемы совпадений настроили так, чтобы регистрировались только те мюоны, которые пролетали сквозь первый поглотитель, но не пролетали сквозь второй. Варьируя толщину первого поглотителя, можно было селективно регистрировать мюоны с теми или иными энергиями – в «окне» с шириной, которую задавала толщина второго поглотителя – и, таким образом, получить данные для довольно широкого спектра мюонов по энергиям! Однако, при работе с моноэнергическими мюонами, определялось лишь отношение собственного времени жизни мюона к его массе покоя [Ф3], которая ещё не была точно установлена. Приходилось, насчёт этой массы, принимать волевое решение… Но зато использовалась схема, позволявшая не задумываться о том, на какой высоте рождаются все мюоны – на 15 или 20 км. Измерения проводились на двух высотах над уровнем моря – с перепадом в пару километров – и соответствующая разница в скоростях счёта трактовалась как индикатор распадов мюонов на этом двухкилометровом пути. Вот, все эти новшества и применили Росси с соавторами [Р2]. Правда, вместо обещанного спектра, они почему-то выдали лишь две точки, 515 и 972 МэВ, для которых собственные времена жизни мюонов неплохо совпали – что, якобы, подтвердило «наличие релятивистского увеличения длительности жизни с ростом энергии» [Ф3]. А было ли это неплохое совпадение обусловлено тем, что требуемую разность скоростей счёта обеспечила соответствующая разность релятивистских факторов – или просто тем, что мюонов с энергиями 972 МэВ изначально несколько меньше, чем с энергиями 515 МэВ? Ведь их исходное распределение по энергиям было неизвестно! Да и рождение мюонов в промежутке между двумя высотами, на которых работал телескоп, авторы не учитывали… Как ни крути, неизвестных в этой задаче было гораздо больше, чем уравнений. А в такой ситуации однозначных решений не бывает – подходит и первое, и второе, и пятое, и десятое. Нравится то, которое подтверждает теорию относительности – его и выбирай!
Эти высоконаучные подтверждения, по «пролётной» и «полу-пролётной» методикам, достойно увенчала методика «непролётная» - с помощью которой, как нас уверяют, измерялось, наконец, время жизни покоящегося мюона. Идея была в использовании поглотителей, в последнем из которых мюон застревал гарантированно – и момент конца его жизни фиксировался по вылету электрона или позитрона распада. Что же касается момента начала жизни мюона… ну, да, он не фиксировался. Как прикажете его фиксировать, если мюон рождался чёрт знает где? Единственный момент, который ещё фиксировался – это момент влёта мюона в установку, т.е. фактически, момент его застревания в поглотителе. Вот и набирали статистику промежутков времени между застреванием мюона в поглотителе и вылетом оттуда электрона или позитрона распада. Следите за логикой: в течение этого промежутка времени мюон, во-первых, жил, а, во-вторых, покоился. Это и послужило основанием для заявлений о том, что таким образом измерялось время жизни покоящегося мюона. Буквально, так сказать!

Дорогой читатель, мы не шутим. Схема установки и методика измерений даны не только в оригинальных статьях [Р2,Р3], но и у того же Фейнберга [Ф3], и в учебной литературе, например, в [М4], [Л2]. Желающие могут убедиться в том, что всё так и делалось, как описано выше. Уточним лишь, что искомое «время жизни» находилось не простым усреднением регистрируемых промежутков времени. Обнаружилась, статистически, спадающая экспоненциальная зависимость числа распадов от промежутка времени между влётом в поглотитель и распадом. Подобная зависимость – это типичная кривая, описывающая радиоактивный распад. Поэтому характерный интервал времени, которому соответствовал спад экспоненты в e раз, и договорились называть «временем жизни покоящегося мюона». И включили эту величину – около 2.2 мкс – в справочники.
Всё это было бы замечательно, если забыть, что мюоны жили и до того, как влететь в поглотитель. А ведь если мюон летел с высоты 20 км, то, по лабораторным часам, он преодолевал этот путь примерно за 67 мкс. Даже если допустить, что релятивистское замедление времени существует, то при релятивистском факторе, равном 10, мюон в этом полёте жил «по своим часам» около 6.7 мкс – т.е. существенно дольше, чем пресловутые 2 мкс. Выходит, что справочное значение продолжительности жизни покоящегося мюона ничуть не характеризует продолжительность жизни мюона «по его собственным часам». И результаты последующих экспериментов – в которых, скажем, при релятивистском факторе, равном 10, мюон жил 22 мкс – вовсе не свидетельствуют о релятивистском замедлении времени. Эти результаты вообще не имеют физического смысла, их смысл – чисто политический. Мюон был первой нестабильной частицей, с помощью которой «доказали» наличие релятивистского замедления времени. Дальше врать было уже проще.
Нет, ну как это можно: рассуждать о том, что в поглотителе мюон живёт всего 2 микросекунды, и за это время он не успел бы много пролететь – при этом прекрасно зная, что на полёт мюон тратит совсем другой, да не малый, отрезок своей жизни? Совсем плохи дела у теории относительности, если её приходится «подтверждать» подобным лепетом. Истина не нуждается во лжи для своего подкрепления. Во лжи нуждается ложь.

Л2. А.Любимов, Д.Киш. Введение в экспериментальную физику частиц. «Физматлит», М., 2001.
М3. А.Н.Матвеев. Механика и теория относительности. «Высшая школа», М., 1976.
М4. К.Н.Мухин. Экспериментальная ядерная физика. Т.2. «Атомиздат», М., 1974.
Р2. B.Rossi, et al. Phys.Rev., 61 (1942) 675.
Р3. F.Rasetti. Phys.Rev., 59 (1941) 706.
Ф2. У.И.Франкфкурт. Специальная и общая теория относительности. «Наука», М., 1968.
Ф3. Е.Л.Фейнберг. Распад мезона. В сборнике статей «Мезон», «Гос. изд-во технико-теоретической литературы», М.-Л., 1947. Стр.80-113.


--- ====================================================================================================---

This site was made on Tilda — a website builder that helps to create a website without any code
Create a website